Md. Kamrul Hasan Reza

Department of Physics
Khulna University of Engineering \& Technology

Khulna-9203, Bangladesh
Tel.: +880-41-769468~75 Ext. 587(O), 588 (R)
e-mail: mkhreza@phy.kuet.ac.bd, mkhreza1@gmail.com
Website: www.kuet.ac.bd/phy/reza/
Instagram: mkhreza1@ Md. Kamrul Hasan Reza
Twitter: mkhreza1@ Md. Kamrul Hasan Reza
www.youtube.com/c/MdKamrulHasanReza

Welcome to my Class

Physics Ph 1229

11:45 AM

February 17, 2021

COVID-19 Precautions

$>$ Don't be afraid
\Rightarrow Be aware of the pandemic
$>$ Use appropriate outfits if you compelled to go out
$>$ Try to maintain proper diet
$>$ Do not forget to exercise (at least one hour) regularly
$>$ Try to follow the guidelines of WHO and Bangladesh Government
$>$ Try to stay at home

The Grating Spectrum

$$
\begin{equation*}
d \sin \theta_{m}=m \lambda(m=0,1,2,3, \ldots . .) \tag{27}
\end{equation*}
$$

If we differentiate eqn. (27), we obtain

$$
\begin{equation*}
\frac{\Delta \theta}{\Delta \lambda}=\frac{m}{d \cos \theta} \tag{28}
\end{equation*}
$$

Resolving Power of a Grating

Resolving Power, $\quad R=\frac{\lambda}{\Delta \lambda}$
(29)

Rayleigh criterion: Two wavelengths in a line spectrum are resolved if the maximum in the diffraction pattern from light with one wavelength coincides with the minimum in the diffraction pattern from light with the other wavelength.

$$
d \sin \theta=m(\lambda+\Delta \lambda)
$$

(30)

$$
\begin{equation*}
d \sin \theta=m \lambda+\frac{\lambda}{N} \tag{31}
\end{equation*}
$$

Thus $\quad R=\frac{\lambda}{\Delta \lambda}=m N$

Interference and Diffraction

Polarization of Light

Experiments on interference and diffraction have shown that light is a form of wave motion. These effects do not tell us about the type of motion i.e., whether the light waves are longitudinal or transverse, or whether the vibrations are linear , circular or torsional. The phenomenon of polarization has helped to establish beyond doubt that light waves are transverse waves.

Longitudinal wave

Transverse wave

Polarization of Transverse Waves

$$
\begin{align*}
& x(z, t)=A \cos \left(k z-\omega t+\varphi_{1}\right) \tag{33}\\
& y(z, t)=A \cos \left(k z-\omega t+\varphi_{2}\right) \tag{34}\\
& z(z, t)=0 \tag{35}\\
& x(z, t)=A \cos (k z-\omega t+\varphi) \\
& y(z, t)=A \cos (k z-\omega t+\varphi) \\
& x^{2}+y^{2}=A^{2}
\end{align*}
$$

$$
\begin{equation*}
E_{x}=E_{o} \cos (k z-\omega t) \tag{39}
\end{equation*}
$$

(40)

$$
E_{y}=0
$$

$$
\begin{equation*}
E_{z}=0 \tag{41}
\end{equation*}
$$

$$
\begin{equation*}
B_{x}=0 \tag{42}
\end{equation*}
$$

$$
B_{y}=B_{o} \cos (k z-\omega t)
$$

$$
\begin{equation*}
B_{z}=0 \tag{44}
\end{equation*}
$$

$$
\begin{equation*}
k=\frac{\omega}{v}=\sqrt{\epsilon \mu} \tag{45}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
v=\frac{1}{\sqrt{\epsilon \mu}} \tag{46}
\end{equation*}
$$

Plane of Polarization

